Forgings

Upset forging

Upset forging increases the diameter of the workpiece by compressing its length. Based on number of pieces produced this is the most widely used forging process. A few examples of common parts produced using the upset forging process are engine valves, couplings, bolts, screws, and other fasteners. Upset forging is usually done in special high speed machines called crank presses, but upsetting can also be done in a vertical crank press or a hydraulic press. The machines are usually set up to work in the horizontal plane, to facilitate the quick exchange of workpieces from one station to the next. The initial workpiece is usually wire or rod, but some machines can accept bars up to 25 cm (9.8 in) in diameter and a capacity of over 1000 tons. The standard upsetting machine employs split dies that contain multiple cavities. The dies open enough to allow the workpiece to move from one cavity to the next; the dies then close and the heading tool, or ram, then moves longitudinally against the bar, upsetting it into the cavity. If all of the cavities are utilized on every cycle then a finished part will be produced with every cycle, which is why this process is ideal for mass production

The following three rules must be followed when designing parts to be upset forged

  • The length of unsupported metal that can be upset in one blow without injurious buckling should be limited to three times the diameter of the bar.
    Lengths of stock greater than three times the diameter may be upset successfully provided that the diameter of the upset is not more than 1.5 times the diameter of the stock.
    In an upset requiring stock length greater than three times the diameter of the stock, and where the diameter of the cavity is not more than 1.5 times the diameter of the stock, the length of unsupported metal beyond the
  • face of the die must not exceed the diameter of the bar.

Impression-die drop forging

Impression-die forging is also called closed-die forging. In impression-die work metal is placed in a die resembling a mold, which is attached to the anvil. Usually the hammer die is shaped as well. The hammer is then dropped on the workpiece, causing the metal to flow and fill the die cavities. The hammer is generally in contact with the workpiece on the scale of milliseconds. Depending on the size and complexity of the part the hammer may be dropped multiple times in quick succession. Excess metal is squeezed out of the die cavities, forming what is referred to as flash. The flash cools more rapidly than the rest of the material; this cool metal is stronger than the metal in the die so it helps prevent more flash from forming. This also forces the metal to completely fill the die cavity. After forging the flash is removed.

In commercial impression-die forging the workpiece is usually moved through a series of cavities in a die to get from an ingot to the final form. The first impression is used to distribute the metal into the rough shape in accordance to the needs of later cavities; this impression is called an edging, fullering, or bending impression. The following cavities are called blocking cavities, in which the piece is working into a shape that more closely resembles the final product. These stages usually impart the workpiece with generous bends and large fillets. The final shape is forged in a final or finisher impression cavity. If there is only a short run of parts to be done it may be more economical for the die to lack a final impression cavity and instead machine the final features. Impression-die forging has been further improved in recent years through increased automation which includes induction heating, mechanical feeding, positioning and manipulation, and the direct heat treatment of parts after forging.

One variation of impression-die forging is called flashless forging, or true closed-die forging. In this type of forging the die cavities are completely closed, which keeps the workpiece from forming flash. The major advantage to this process is that less metal is lost to flash. Flash can account for 20 to 45% of the starting material. The disadvantages of this process include additional cost due to a more complex die design and the need for better lubrication and workpiece placement. There are other variations of part formation that integrate impression-die forging. One method incorporates casting a forging preform from liquid metal. The casting is removed after it has solidified, but while still hot. It is then finished in a single cavity die. The flash is trimmed, then the part is quench hardened. Another variation follows the same process as outlined above, except the preform is produced by the spraying deposition of metal droplet into shaped collectors (similar to the Osprey process).

Closed-die forging has a high initial cost due to the creation of dies and required design work to make working die cavities. However, it has low recurring costs for each part, thus forgings become more economical with more volume. This is one of the major reasons closed-die forgings are often used in the automotive and tool industry. Another reason forgings are common in these industrial sectors is because forgings generally have about a 20 percent higher strength-to-weight ratio compared to cast or machined parts of the same material. Forging dies are usually made of high-alloy or tool steel. Dies must be impact resistant, wear resistant, maintain strength at high temperatures, and have the ability to withstand cycles of rapid heating and cooling. In order to produce a better, more economical die the following rules should be followed:

  • The dies should part along a single, flat plane if at all possible. If not the parting plane should follow the contour of the part.
  • The parting surface should be a plane through the center of the forging and not near an upper or lower edge.

  • Adequate draft should be provided; a good guideline is at least 3° for aluminum and 5° to 7° for steel
  • Generous fillets and radii should be used
  • Ribs should be low and wide
  • The various sections should be balanced to avoid extreme difference in metal flow
  • Full advantage should be taken of fiber flow lines
  • Dimensional tolerances should not be closer than necessary

The dimensional tolerances of a steel part produced using the impression-die forging method are outlined in the table below. It should be noted that the dimensions across the paring plane are affected by the closure of the dies, and are therefore dependent die wear and the thickness of the final flash. Dimensions that are completely contained within a single die segment or half can be maintained at a significantly greater level of accuracy

Open Die Forging

Open die forging is performed between flat dies with no precut profiles is the dies. Movement of the work piece is the key to this method. Larger parts over 200,000 lbs. and 80 feet in length can be hammered or pressed into shape this way. Open-die forging can produce forgings from a few pounds up to more than 150 tons. Called open-die because the metal is not confined laterally by impression dies during forging, this process progressively works the starting stock into the desired shape, most commonly between flat-faced dies. In practice, open-die forging comprises many process variations, permitting an extremely broad range of shapes and sizes to be produced. In fact, when design criteria dictate optimum structural integrity for a huge metal component, the sheer size capability of open-die forging makes it the clear process choice over non-forging alternatives. At the high end of the size range, open-die forgings are limited only by the size of the starting stock, namely, the largest ingot that can be cast. Practically all forgeable ferrous and non-ferrous alloys can be open-die forged, including some exotic materials like age-hardening superalloys and corrosion-resistant refractory alloys. Open-die shape capability is indeed wide in latitude. In addition to round, square, rectangular, hexagonal bars and other basic shapes, open-die processes can produce:

  • Step shafts solid shafts (spindles or rotors) whose diameter increases or decreases (steps down) at multiple locations along the longitudinal axis.
  • Hollows cylindrical in shape, usually with length much greater than the diameter of the part. Length, wall thickness, ID and OD can be varied as needed.
  • Ring-like parts can resemble washers or approach hollow cylinders in shape, depending on the height/wall thickness ratio.
  • Contour-formed metal shells like pressure vessels, which may incorporate extruded nozzles and other design features.
Not unlike successive forging operations in a sequence of dies, multiple open-die forging operations can be combined to produce the required shape. At the same time, these forging methods can be tailored to attain the proper amount of total deformation and optimum grain-flow structure, thereby maximizing property enhancement and ultimate performance for a particular application. Forging an integral gear blank and hub, for example, may entail multiple drawing or solid forging operations, then upsetting. Similarly, blanks for rings may be prepared by upsetting an ingot, then piercing the center, prior to forging the ring.